光合作用增加受光面积结构(光合作用强度和光照强度的关系)

光合作用增加受光面积结构(光合作用强度和光照强度的关系)

健康|养生彩彩2024-04-08 5:22:40408A+A-

光合作用强度和光照强度的关系

光合作用强度指的是植物在光照下,单位时间内Co2的吸收量或O2的释放量,常用单位为毫克二氧化碳/平方分米/小时。

实际光合作用强度是植物在光照下实际同化二氧化碳的量,但植物在进行光合作用时也进行呼吸作用,会同时放出二氧化碳,因此所测得的一般为表面光合作用或净光合作用,就是实际光合作用所同化的二氧化碳的量减去因呼吸作用而释放的二氧化碳的量。一般所说的光合作用强度,就是指净光合作用强度。

光合作用强度和光照强度的关系图

光合作用的补偿点就是光合作用吸收的CO2速率等于呼吸作用释放的CO2

光合作用的饱和点就是光合作用光合速率达到最大值时的最低CO2浓度,CO2达一定浓度时,光合速率不再增加

处于光补偿点时,绿色植物的光合作用强度等于呼吸作用强度,此时植物表现为既不释放氧气,也不吸收二氧化碳。等于或大于光饱和点时,光合作用强度不再随光照强度的增大而增大,即光照强度不再是光合作用强度的自变量。

光合作用强度与光照时间有关吗

光合作用的影响因素

(1)光照强度:光照增强,光合作用随之加强。但光照增强到一定程度后.光合作用不再加强。夏季中午,由于气孔关闭,影响二氧化碳的进入,光合作用强度反而下降,因而中午光照最强的时候,并不是光合作用最强的时候。

(2)二氧化碳浓度:二氧化碳是光合作用的原料,其浓度影响光合作用的强度。温室种植蔬可适当提高大棚内二氧化碳的浓度,以提高产量。

(3)温度:植物在10℃~35℃、条件下正常进行光合作用,其中25℃~30℃最适宜,35℃以上光合作用强度开始下降,甚至停止。

光合作用强度和光照强度的关系是什么

光照的周期比光照的强度长度更重要。个主要体现在光照要有一个阶段性会产生光合作用。和动植物的生长提供温暖的环境。所以需要周期性的循环。

而如果光照强度长,而只是一次短期的话,那么就会产生温度集中过热,而又不可持续反而是有害的。

光合作用与光照强度

光是光合作用的动力,也是形成叶绿素、叶绿体以及正常叶片的必要条件,光还显著地调节光合酶的活性与气孔的开度,因此光直接制约着光合速率的高低。光照因素中有光强、光质与光照时间,这些对光合作用都有深刻的影响。

光合作用强度与光照强度、二氧化碳浓度、水分供给情况、气孔开闭情况等有关。光是光合作用的能量来源,所以在光照增强时,光合作用也随着加强。但是,当光照增强到一定限度,即达到光饱和后,光合作用就不再加强了。

光合作用强度和光照强度的关系公式

光照强度是一种物理术语,指单位面积上所接受可见光的能量。对生物的光合作用影响很大。可通过照度计来测量。光照强度是指单位面积上所接受可见光的能量,简称照度[1] ,单位勒克斯(Lux或Lx)。为物理术语,用于指示光照的强弱和物体表面积被照明程度的量。在光度学(photometry)中,“光度”是发光强度在指定方向上的密度,但经常会被误解为照度。照度的国际单位是每平方米所接受的烛光(中国大陆、港澳称坎德拉)。一个被光线照射的表面上的照度(illumination/illuminance)定义为照射在单位面积上的光通量。设面元dS 上的光通量为dΦ,则此面元上的照度E为:E=dΦ/dS 。1lx=1lm/㎡。被光均匀照射的物体,在1平方米面积上所得的光通量是1流明时,它的照度是1勒克斯。流明是光通量的单位。光照强度与光合作用强度曲线图发光强度为1烛光的点光源,在单位立体角(1球面度)内发出的光通量为“1流明”。烛光(Candela),音译“坎德拉”。烛光的概念最早是英国人发明的,它是发光强度(Luminous intensity)的单位。当时英国人以一磅的白蜡制造出一尺长的蜡烛所燃放出来的光来定义烛光单位。而如今的定义已有了变化:以一立方厘米的黑色发光体加热,一直到该发光体将熔为液体时,所发出的光量的1/60就是标准光源,而烛光就是这种标准光源所放射出来的光量单位。

光合作用强度和光照强度的关系曲线

对于一般的农作物来说,从小到大的发育过程中,随生长发育的进行,其光合作用的强度应该是逐步增强的。其原因很简单:光合作用的面积在逐步的增加。

但是,一般的作物,孕育花蕾表示生殖生长的开始,同时也是营养生长的结束,也可以说是叶面积最大的时候,也就是说这时候光合作用的面积达到最大。这时候的光合作用强度应该是最大的。

为探究光照强度对光合作用的影响

光照强度是一种物理术语,指单位面积上所接受可见光的光通量。简称 照度,单位勒克斯(Lux或Lx)。用于指示光照的强弱和物体表面积被照明程度的量。 在 光度学(photometry)中,“ 光度”是发光强度在指定方向上的 密度,但经常会被误解为 照度。 光度的国际单位是每平方米所接受的烛光(中国大陆、港澳称坎德拉)。 光照强度对生物的光合作用影响很大。可通过照度计来测量。

照度是物体被照明的程度。也即物体表面所得到的光通量与被照面积之比,单位是 勒克斯Ix ( 1勒克斯是1 流明 的光通量均匀照射在1平方米面积上所产生的照度) 或 英尺烛光fc( 1英尺烛光是1流明的光通量均匀照射在1平方英尺面积上所产生的照度),1 fc=10.76 lx。

夏季在阳光直接照射下,光照强度可达6万~10万lx,没有太阳的室外0.1万~1万lx,夏天明朗的室内100~550lx,夜间满月下为0.2lx。

白炽灯每瓦大约可发出12.56 lx的光,但数值随灯泡大小而异,小灯泡能发出较多的流明,大灯泡较少。 荧光灯的 发光效率是白炽灯的3~4倍,寿命是白炽灯的9倍,但价格较高。一个不加灯罩的白炽灯泡所发出的光线中,约有30%的流明被墙壁、顶棚、设备等吸收;灯泡的质量差与阴暗又要减少许多流明,所以大约只有50%的流明可利用。一般在有灯罩、灯高度为2.0~2.4m(灯泡距离为高度的1.5倍)时,每0.37㎡面积上需1W灯泡、或1㎡面积上需2.7W灯泡可提供10.76 lx。灯泡安装的高度及有无灯罩对光照强度影响很大。

光照是影响光合作用强度的重要因素

光是光合作用的动力,也是形成叶绿素、叶绿体以及正常叶片的必要条件,光还显著地调节光合酶的活性与气孔的开度,因此光直接制约着光合速率的高低。光照因素中有光强、光质与光照时间,这些对光合作用都有深刻的影响。

一、光合速率及表示单位

光合速率通常是指单位时间、单位叶面积的CO2吸收量或O2的释放量,也可用单位时间、单位叶面积上的干物质积累量来表示。常用单位有:μmol CO2·m-2·s-1、μmol O2·dm-2·h-1 和mgDW(干重)·dm-2·h-1。

CO2吸收量用红外线CO2气体分析仪测定,O2释放量用氧电极测氧装置测定,干物质积累量可用改良半叶法等方法测定。有的测定光合速率的方法都没有把呼吸作用(光、暗呼吸)以及呼吸释放的CO2被光合作用再固定等因素考虑在内,因而所测结果实际上是表观光合 速率或净光合速率,如把表观光合速率加上光、暗呼吸速率,便得到总光合速率或真光合速率。

二、内部因素

 (一)叶片的发育和结构

  1.叶龄

新长出的嫩叶,光合速率很低。其主要原因有:(1)叶组织发育未健全,气孔尚未完全形成或开度小,细胞间隙小,叶肉细胞与外界气体交换速率低;(2)叶绿体小,片层结构不发达,光合色素含量低,捕光能力弱;(3)光合酶,尤其是Rubisco的含量与活性低。(4)幼叶的呼吸作用旺盛,因而使表观光合速率降低。但随着幼叶的成长,叶绿体的发育,叶绿素含量与Rubisco酶活性的增加,光合速率不断上升;当叶片长至面积和厚度最大时,光合速率通常也达到最大值,以后,随着叶片衰老,叶绿素含量与Rubisco酶活性下降,以及叶绿体内部结构的解体,光合速率下降。

依据光合速率随叶龄增长出现“低—高—低”的规律,可推测不同部位叶片在不同生育期的相对光合速率的大小。如处在营养生长期的禾谷类作物,其心叶的光合速率较低,倒3叶的光合速率往往最高;而在结实期,叶片的光合速率应自上而下地衰减。

   2.叶的结构

叶的结构如叶厚度、栅栏组织与海绵组织的比例、叶绿体和类囊体的数目等都对光合速率有影响。叶的结构一方面受遗传因素控制,另一方面还受环境影响。

  C4植物的叶片光合速率通常要大于C3植物,这与C4植物叶片具有花环结构等特性有关。许多植物的叶组织中有两种叶肉细胞,靠腹面的为栅栏组织细胞;靠背面的为海绵组织细胞。栅栏组织细胞细长,排列紧密,叶绿体密度大,叶绿素含量高,致使叶的腹面呈深绿色,且其中Chla/b比值高,光合活性也高,而海绵组织中情况则相反。生长在光照条件下的阳生植物(sun plant)叶栅栏组织要比阴生植物(shade plant)叶发达,叶绿体的光合特性好,因而阳生叶有较高的光合速率。

同一叶片,不同部位上测得的光合速率往往不一致。例如,禾本科作物叶尖的光合速率比叶的中下部低,这是因为叶尖部较薄,且易早衰的缘故。

 (二)光合产物的输出

光合产物(蔗糖)从叶片中输出的速率会影响叶片的光合速率。例如,摘去花、果、顶芽等都会暂时阻碍光合产物输出,降低叶片特别是邻近叶的光合速率;反之,摘除其他叶片,只留一张叶片与所有花果,留下叶的光合速率会急剧增加,但易早衰。对苹果等果树枝条环割,由于光合产物不能外运,会使环割上方枝条上的叶片光合速率明显下降。光合产物积累到一定的水平后会影响光合速率的原因有:(1)反馈抑制。例如蔗糖的积累会反馈抑制合成蔗糖的磷酸蔗糖合成酶的活性,使F6P增加。而F6P的积累,又反馈抑制果糖1,6-二磷酸酯酶活性,使细胞质以及叶绿体中磷酸丙糖含量增加,从而影响CO2的固定;(2)淀粉粒的影响。叶肉细胞中蔗糖的积累会促进叶绿体基质中淀粉的合成与淀粉粒的形成,过多的淀粉粒一方面会压迫与损伤类囊体植物的光合作用受内外因素的影响,而衡量内外因素对光合作用影响程度的常用指标是光合速率。

三、外部因素

(一)光照

光是光合作用的动力,也是形成叶绿素、叶绿体以及正常叶片的必要条件,光还显著地调节光合酶的活性与气孔的开度,因此光直接制约着光合速率的高低。光照因素中有光强、光质与光照时间,这些对光合作用都有深刻的影响。

  1.光照强度

(1)光强-光合曲线

X

随着光强的增高,光合速率相应提高,当到达某一光强时,叶片的光合速率等于呼吸速率,即CO2吸收量等于CO2释放量,表观光合速率为零,这时的光强称为光补偿点。在低光强区,光合速率随光强的增强而呈比例地增加(比例阶段,直线A);当超过一定光强,光合速率增加就会转慢(曲线B);当达到某一光强时,光合速率就不再增加,而呈现光饱和现象。开始达到光合速率最大值时的光强称为光饱和点,此点以后的阶段称饱和阶段(直线C)。比例阶段中主要是光强制约着光合速率,而饱和阶段中CO2扩散和固定速率是主要限制因素。

不同植物的光强-光合曲线不同,光补偿点和光饱和点也有很大的差异。光补偿点高的植物一般光饱和点也高,草本植物的光补偿点与光饱和点通常要高于木本植物;阳生植物的光补偿点与光饱和点要高于阴生植物;C4植物的光饱和点要高于C3植物。光补偿点和光饱和点可以作为植物需光特性的主要指标,用来衡量需光量。光补偿点低的植物较耐阴,如大豆的光补偿点仅0.5klx,所以可与玉米间作,在玉米行中仍能正常生长。在光补偿点时,光合积累与呼吸消耗相抵消,如考虑到夜间的呼吸消耗,则光合产物还有亏空,因此从全天来看,植物所需的最低光强必须高于光补偿点。对群体来说,上层叶片接受到的光强往往会超过光饱和点,而中下层叶片的光强仍处在光饱和点以下,如水稻单株叶片光饱和点为40~50klx,而群体内则为60~80lx,因此改善中下层叶片光照,力求让中下层叶片接受更多的光照是高产的重要条件。

植物的光补偿点和光饱和点不是固定数值,它们会随外界条件的变化而变动,例如,当CO2浓度增高或温度降低时,光补偿点降低;而当CO2浓度提高时,光饱和点则会升高。在封闭的温室中,温度较高,CO2较少,这会使光补偿点提高而对光合积累不利。在这种情况下应适当降低室温,通风换气,或增施CO2才能保证光合作用的顺利进行。

在一般光强下,C4植物不出现光饱和现象,其原因是:①C4植物同化CO2消耗的同化力要比C3植物高 ②PEPC对CO2的亲和力高,以及具有“CO2泵”,所以空气中CO2浓度通常不成为C4植物光合作用的限制因素。

(2)强光伤害—光抑制

光能不足可成为光合作用的限制因素,光能过剩也会对光合作用产生不利的影响。当光合机构接受的光能超过它所能利用的量时,光会引起光合速率的降低,这个现象就叫光合作用的光抑制。

晴天中午的光强常超过植物的光饱和点,很多C3植物,如水稻、小麦、棉花、大豆、毛竹、茶花等都会出现光抑制,轻者使植物光合速率暂时降低,重者叶片变黄,光合活性丧失。当强光与高温、低温、干旱等其他环境胁迫同时存在时,光抑制现象尤为严重。通常光饱和点低的阴生植物更易受到光抑制危害,若把人参苗移到露地栽培,在直射光下,叶片很快失绿,并出现红褐色灼伤斑,使参苗不能正常生长;大田作物由光抑制而降低的产量可达15%以上。因此光抑制产生的原因及其防御系统引起了人们的重视。

光抑制机理:一般认为光抑制主要发生在PSⅡ。按其发生的原初部位可分为受体侧光抑制和供体侧光抑制。受体侧光抑制常起始于还原型QA的积累。还原型QA的积累促使三线态P680(P680T)的形成,而P680T可以与氧作用(P680T +O2→P680 + 1O2)形成单线态氧(1O2);供体侧光抑制起始于水氧化受阻。由于放氧复合体不能很快把电子传递给反应中心,从而延长了氧化型P680(P680+)的存在时间。P680+和1O2都是强氧化剂,如不及时消除,它们都可以氧化破坏附近的叶绿素和pan >D1蛋白,从而使光合器官损伤,光合活性下降。

光合作用强度随光照强度变化趋势

影响光合作用的因素

1 光照

光合作用是一个光生物化学反应,所以光合速率随着光照强度的增加而加快.但超过一定范围之后,光合速率的增加变慢,直到不再增加.光合速率可以用CO?的吸收量来表示,CO?的吸收量越大,表示光合速率越快.

2 二氧化碳

CO?是绿色植物光合作用的原料,它的浓度高低影响了光合作用暗反应的进行.在一定范围内提高CO?的浓度能提高光合作用的速率,CO?浓度达到一定值之后光合作用速率不再增加,这是因为光反应的产物有限.

3 温度

温度对光合作用的影响较为复杂.由于光合作用包括光反应和暗反应两个部分,光反应主要涉及光物理和光化学反应过程,尤其是与光有直接关系的步骤,不包括酶促反应,因此光反应部分受温度的影响小,甚至不受温度影响;而暗反应是一系列酶促反应,明显地受温度变化影响和制约.当温高于光合作用的最适温度时,光合速率明显地表现出随温度年升而下降,这是由于高温引起催化暗反应的有关酶钝化、变性甚至遭到破坏,同时高温还会导致叶绿体结构发生变化和受损;高温加剧植物的呼吸作用,而且使二氧化碳溶解度的下降超过氧溶解度的下降,结果利于光呼吸而不利于光合作用;在高温下,叶子的蒸腾速率增高,叶子失水严重,造成气孔关闭,使二氧化碳供应不足,这些因素的共同作用,必然导致光合速率急剧下降.当温度上升到热限温度,净光合速率便降为零,如果温度继续上升,叶片会因严重失水而萎蔫,甚至干枯死亡.

4 矿质元素

矿质元素直接或间接影响光合作用.例如,N是构成叶绿素、酶、ATP的化合物的元素,P是构成ATP的元素,Mg是构成叶绿素的元素.

5 水分

水分既是光合作用的原料之一,又可影响叶片气孔的开闭,间接影响CO?的吸收.缺乏水时会使光合速率下降.

光合作用强度和光照强度的关系是

正解应是 阳光过强时,植物的蒸腾作用也过强,植物大量失水,为了保持住足够的水分,叶片上的气孔关闭(蒸腾的水分是通过气孔散失的),气孔关闭后,二氧化碳也被阻止进入植物中,没有充足的二氧化碳作为光合作用暗反映的原料,光合作用就渐渐减慢了。

点击这里复制本文地址 版权声明:本文内容由网友提供,该文观点仅代表作者本人。本站(https://www.angyang.net.cn)仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件举报,一经查实,本站将立刻删除。

昂扬百科 © All Rights Reserved.  渝ICP备2023000803号-3网赚杂谈